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The problem of the stability of the equilibrium position of a scleronomic mechanical system is considered. The comparison method 
enables this problem to be reduced to the problem of the stability of scalar differential equations. The stability conditions are 
found for certain types of scalar comparison equations (Sections 1--4), and the sufficient conditions for the stability of the 
equilibrium positions of various scleronomous mechanical systems are determined from these (Sections 5-9). © 2003 Elsevier 
Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

Consider the scalar differential equation 

= a(t)f(u) + G(t, u) (1.1) 

where a : R + --> R , f :  (0, U) ---> (0, oo) (0 < U ~< + oo) and G : R + x (0, U) --> R + are continuous functions 
satisfying the conditions 

! 

a(s)ds ~< a., Yt E R*, a. > 0 (1.2) 
o 

i ds 
o f(s)  =**' VuE(O,U) (1.3) 

These conditions guarantee the stability of the solution u = 0 of  the unperturbed equation u = a(t)f(u) 
(see, e.g. [1]). 

In the first part of  this paper (Sections 2--4), the problem of the stability of the unperturbed solution 
u = 0 for various assumptions with regard to the perturbation G(t, u) is analysed. In Section 2 the 
case 

G(t, u) = b(t)f(u)cp(AF) (1.4) 

is considered, where b : R + ---) R + (b(t) = 0) and ¢0 : (0, oo) ---> (0, oo) are continuous functions, and the 
functionsA(t) and F(u) are defined by the equations [1, 2] 

a ( t ) = e x ~ - !  a(s)dsl, F ( u ) = e x p ( !  f-~s)) (1.5) 

for a certain ~ e (0, U). 

Remark 1.1. It follows from conditions (1.2) and (1.3) thatA(t) ~> exp(-a,) in R +, the function F(u) is defined 
and strictly increases in (0, U), F(u) ~ 0 as u --) O. Hence, the function F(u) can be considered as a function of 
the Hahn type. As is well known [3], the function ? : R + ~ R +, which increases strictly monotonically with a value 
y(0) = 0, is of this type. We will henceforth denote the class of such functions by K. 
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In the case when ~0(s) = s ~ (k = const ~ 0), Eq. (1.1) can be converted to the form 

f i = a ( t ) ~ + ~ ( t )  F(u)t+---'-~l ~( t )=b( t )Ak( t ) ,  F'(u) dF 
F (u) r ' (u )  ' = ~u  

This equation is called the "extended" Bernoulli equation (see, e.g. [4]) and whenf(u) = u is identical 
with the classical Bernoulli equation. 

Theorems of the stability of the solution u --- 0 are obtained in Section 3 for the case when q0(s) = s k 
in Eq. (1.4). 

In Section 4 it is assumed that a(t) >! 0 in R ÷ and 

G(t, u) = ~(t)g(u) 

where g : (0, U) ~ (0, ~ )  is a continuous function. 

Remark 1.2. Suppose to E R ÷ and u0 ~ (0, U) are given. We will denote the solution of the Cauchy problem 

= a(t)f(u) + G(t,u), u(t O) = u 0 

by u(t) = u(t, to, Uo) and its maximum interval of existence by I = [to, 0~), o) ~< ~. Using the comparison method 
it can be proved that in the cases considered 

u(t,to,uo)>O, V t e l  

and, consequently, if 0~ < ,,o, then u(t, to, Uo) --> U as t --> co-. 

In what follows, without citing the well-known definitions of stability, we will use the following 
definitions. 

Definition 1.1. Solution u = 0 is called an equi-attractive solution, if Vt0 1> 0, B8 ~ (0, U), Ve E (0, U), 
3T > 0, VUo ~ (0, 8) u(t, to, Uo) < e, Vt ~ to + T. 

Definition 1.2. Solution u = 0 is called an equi-asymptotically stable solution, if it is stable and equi- 
attractive. 

Definition 1.3. The unperturbed solution u = 0 is called an eventually stable solution, if Ve 6 (0, U), 
3 T  > O, Vto ~ T, 38 ~ (0, U), Vu 0 E (0, 8) u(t, to, Uo) < e, Vt >1 to. 

Definition 1.4. Solution u = 0 is called an eventually uniformly stable solution, if the constant 8 in 
Definition 1.3 does not depend on to. 

In the second part of the paper (Sections 5-9), the stability of the equilibrium position of a mechanical 
system with holonomic time-independent constraints under the action of explicitly time-dependent forces 
is considered. Problems of stability are examined for cases when the potential energy is not positive 
definite and even not non-negative for a fixed time. 

In Section 5 the formulation of the problem is given. In Section 6 differential comparison equations 
are formulated. In Section 7 the conditions of stability of the zero equilibrium position of a mechanical 
system with respect to velocities are derived, and in Section 8 they are derived with respect to velocities 
and coordinates. In Section 9 specific examples are considered. 

2. THE CASE OF A P E R T U R B A T I O N  G ( t ,  u)  = b ( t ) f ( u ) q ~ ( A F )  

We will consider the equation 

fi - a ( t ) f (u )  + b(t) f(u)lp(AF) 

depending on the convergence or divergence of the integral 

i d s  ~ ,  r>O 
o s~s)  

(2.1) 

(2.2) 
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We define the function 

r 
O ( r ) =  ds or ~ ( r ) =  ds (2.3) 

sq~ s ) s~( s ) 

for certain c > 0 corresponding to these assumptions (c = +oo is also possible). In both cases ~(r) is 
a strictly monotonically increasing function, defined in the interval (0, oo) with the set of values (0, l) 
and (-oo, l) (l > 0), respectively. 

L e m m a  2.1. Suppose to s R + and u0 E (0, U) are given. Then 

A(t)F(u(t)) = ~-i(dP(u o) + B(to,t)), Vt  E 1 (2.4) 
f 

v o = a(to)F(uo), B(to,t ) = ~ b(s)ds 
to 

where ~-1 is the inverse function of • and u(t) = u(t, to, Uo) is the solution of Eq. (2.1). 

Proof. We will assume that o(t) = A(t )F(u( t ) )  for any t ~ I; then from Eq. (2.1) we obtain the following 
equality 

O(t) = b(t)u(t){p(u (t)), Vt  E I 

Hence and from Remark 1.1 it follows that o(t) > 0 in I and this also means that o(t)q~(o(t)) > 0 
in I. 

Further by separating the variables and integrating, we obtain 

O(u ( t ) ) -  ¢}(0o) = B(to,t) 

Below we will denote the class of continuous functions b : R ÷ ---> R ÷ by L1(R+), 

~ b( t )dt < 4-oo 
0 

Theorem 2.1. If integral (2.2) is diverging and the function b(t) ~ LI(R+),  then the solution u = 0 is 
stable. 

Given the additional assumption 

A(t) <~ A I = const, Vt ~ R + 

this stability is uniform. IfA(t) ---> oo as t ---> oo, then the solution u = 0 is equi-asymptotically stable. 

Proof. We will fix to ~> 0 and e s (0, U) and assume that 5 = 8(t0, e) is a constant satisfying the relation 

A(to)F(5 ) = ~ - l  (dp(e-a. F(E) ) -  B(t o, **)) 

(the constant a .  is defined by condition (1.2)). Consequently, we obtain 

O(A(t  o)F(8)) + B(t o, t) <~ O(e -a" F(~.)), Vt  >>- t o (2.5) 

It is obvious that F(8) < F(e); consequently, 0 < ~ < ~ < U. If the point u0 e (0, 6) is fixed arbitrarily, 
the function F(u)  will be defined at the point u0 and A(to)F(uo) < A(to)F(8).  From Eqs (2.4) and (2.5) 
we obtain the inequality 

~(A(t )F(u( t ) ) )  < ~l~(e -a" F(e)), Vt  E 1 

But O(r) and F(u)  are strictly increasing functions andA(t)  >i e -a* in L This implies that u(t)  < e in 
I and I = [to, oo), and it means that the solution u = 0 is stable. 



946 G. Cantarelli 

For condition A(t) ~< A1 = const the number 6(e), 0 < 6 < e, determined from the equation 

AIF(8) = q~-1(q~(e-a" F(e) ) -  B(0,**)) 

does not depend explicitly on to. Consequently, the stability of the solution u = 0 will be uniform. 
We will show that irA(t) ---) +oo for t ---) +0% then the solution u = 0 of the unperturbed equation 

will be equi-attractive. For this condition for 6 e (0, U), to ~ R ÷ and e e (0, U) a number T -- 
T(to, e) > 0 can be found such that 

A(t)F(E) >~ ~-I(O(A(to)F(8))-  B(to,,,.)), Vt ~ t o + T (2.6) 

We will fix the arbitrary number u0 e (0, U). Since 

O(A(to)F(uo))+ B(to,t ) < O(A(to)F(8))+ B(to,**), Vt >~ t o 

then, comparing Eqs (2.4) and (2.6) it is easy to obtain thatA(t)F(u(t)) < A(t)F(e), Vt >I to + T and, 
consequently, u(t) < e, Vt >- t o + T. This concludes the proof. 

Theorem 2.2. The solution u = 0 of Eq. (2.1) is unstable for condition (2.2). 

Proof. We will fix the number to e R ÷, so that b(to) > 0. Let e e (0, U) be a constant, satisfying the 
inequality 

F(~t) < s u p ~ - ~ l  q : , (B( to , t ) ) l  (2.7) 
t;-o [ a(O J 

Using the method of proof by contradiction, we will suppose that a Uo e (0, U) exists such that u(t) = 
u(t, to, Uo) < e at [to, oo). Then, using Eq. (2.4) we obtain 

1 q:l(~(A(to)F(Uo)) + B(to,t)) < F(s), ~'t ~ t o 
A(t) 

which contradicts inequality (2.7). 
The following theorem demonstrates that instability does not mean the loss of eventual stability. 

Theorem 2.3. If condition (2.2) and also the condition 

~-I(B(to,t))l(A(t))--*O as t---~o. 

are satisfied, then the solution u = 0 of the unperturbed equation is eventually stable. 

Proof. From the conditions of the theorem it follows that a constant T = T(e) exists such that 

0 < O-I(B(O,t)) < A(t)F(e), Vt >I T (2.8) 

We will use to t> T and denote by 6 = 6(t0, e) < e the number satisfying the relation 

A(t o)F(8) = O-I (B(0, t o )) 

We will fix Uo from the interval (0, 8). Since F(uo) < F(8), it follows that 

O(A(to)F(uo))+ B(to,t ) < B(0,to), Vt >-- t o 

Hence, using Eqs (2.4) and (2.8), we obtain 

A(t)F(u(t)) < A(t)F(F.), Vt ~ t o 

Consequently u(t) < e in [to, co). 
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The following theorem can be proved similarly. 

Theorem 2.4. If inequality (2.2) holds and also 
(1) b(t) ~ LI(R+); 
(2) a constantA1 < oo exists such thatA(t)  ~<A1 inR+; 

then the solution u = 0 is eventually uniformly stable. 

3. T H E  CASE OF A P E R T U R B A T I O N  G( t ,  u) = ~ ( t ) f ( u ) F k ( u )  

Consider the scalar differential equation obtained from (2.1) for q~(s) = s k, 

I! ;* = a( t ) f (u)+ f$(t)g(u), g(u) = f(u)exp k ds (3.1) 

where 13 : R ÷ ---> R ÷ is a continuous function, not identically equal to zero in R ÷. 

Remark 3.1. Ifc = oo is chosen when k > 0, then by the definition of O(s) 

tl~(s) = -k-Is  -k, Vs ;= 0 

Since b(t) = fA(t)A-k(t), Eq. (2.4) is replaced by the following relation 

A(t)F(u(t))=[(A(t°)F(uo))-k -k to ~(s)A-tC(s)ds] -111, Vt e l (3.2) 

u(t)=u(t, to,Uo), t0~R +, u0~(0,U) 

The following results stem from Theorems 2.1, 2.3 and 2.4, respectively. 

Corollary 3.1. If k > 0 and 13(t)A-~(t) ~ LI(R+), then the solution u = 0 of  Eq. (3.1) is uniformly 
stable. If also A(t )  <<- A 1 = const for t e R +, then this stability is uniform. If also A(t )  --~ ~ for t ---> ~ ,  
then the solution u = 0 of Eq. (3.1) is equi-asymptotically stable. 

Corollary 3.2. If k < 0 and 

! 

Ak(t)~ ~ ( s ) A - k ( s ) d s ~ O  as t ~ * *  (3.3) 
0 

then the solution u = 0 of Eq. (3.1) is eventually stable. 

Corollary 3.3. I fk  < O, ~(t)~ L1(R +) andA(t) ~<A 1 = const in R + (A 1 = const < ~) ,  then the solution 
u = 0 of Eq. (3.1) is eventually uniformly stable. 

In addition the following two theorems can be formulated. 

Theorem 3.1. Suppose k > 0 and two constants B < ~ and H I> 1 exist such that 

1) Ak(t)~ ~l(s)A-k(s)ds<~ B, Vt  ~ 0; 
t 

2) A(t I)<~ HA(t 2), Vt I >~O, Vt 2 ~ t  I. 

Then the solution u = 0 of Eq. (3.1) is uniformly stable. 

Proof. Note that Condition 1 only makes sense in the case, when the function ~(t)A-k(t) belongs to 
the class L l(R+). Hence, by Corollary 3.1 we find that the solution u = 0 is stable. We fix e in the interval 
(0, U) and determine the constant $ = 8(e) < e from the equality 
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Taking into account Condition I of the theorem we conclude that for any to e R + and u0 e (0, 6) the 
following inequality holds 

F-'(Uo)-kA'(to) j 13(s)A-'(s)ds>( tt ~ ', Vt>.t 0 
,o I, F(e) ) 

Relation (3.2) can be written in the form 

I " t I-Ilk, 
A(t)F(u(t)) = A(t o F-~ (Uo)- kAk (to) [ 13(s)A-k (s)ds 

L to 
Hence, taking into account inequality (3.4) we obtain 

From condition 2 it follows that 

and we can conclude that 

• F(~.), 
A(t)F(u(t)) < A(t o)--if-- 

A(to) <~ HA(t), Vt >! t o 

Vte  I 

F(u(t)) < F(e), Vt  >~ t o 

The theorem is proved. 

Theorem 3.2. We will assume that k < 0, and also that 
(1) condition (3.3) is satisfied; 
(2) a constant H I> 1 exists such that 

A( h ) <<. HA(t 2), X/t I >>- O, Vt 2 ;~ t I 

Then the solution u = 0 of Eq. (3.1) is eventually uniformly stable. 

Vte  I 

(3.4) 

4. THE CASE OF A P E R T U R B A T I O N  G(t ,  u) = fA(t)g(u) 

We will consider the perturbed equation 

= a(t)f(u) + ~(t)g(u) (4.1) 

where the continuous function 13" R ÷ ---> R ÷ belongs to the class LI(R +) and g • (0, U) ---> [0, 0o) is a 
continuous function. 

We will assume that a(t) >i 0 in R +. Consequently, according to Eq. (1.2) a(t) is a function belonging 
to the class LI(R+). 

Theorem 4.1. We will assume that the function a(t)13(t) is not identically zero in R +. Then the zero 
solution of Eq. (4.1) is uniformly stable, if and only if 

Y ds 
l (u)  = J = **, Vu e (0, U)  (4.2) 

o f ( s ) +  g(s) 

Proof. For condition (4.2) the zero solution of the scalar equation 
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d = (a(t) + ~J(t))(f(v ) + g(v )) 

is uniformly stable (see, e.g. [1], Corollary 2.1). 
From the limit 

<~ (a(t) + ~(t))(f(u) + g(u)) 

using the comparison method, we conclude the sufficiency. 
Suppose condition (4.2) is not satisfied. We will consider the scalar equation 

u' = T( t ) ( f (v )+g(v  )); ?(t) = min{a(t),~J(t)}, Vt  >>- 0 (4.3) 

Since the function y(t) is positive and not identically zero in R ÷, the solution u = 0 of Eq. (4.3) is 
unstable (see, e.g. [1, Theorem 3.1]). But then from the comparison method we also obtain that the 
solution u = 0 of Eq. (4.1) is unstable. The necessity is proved. 

The following theorem is proved similarly. 

Theorem 4.2. If in condition (4.2) 

l(u) < +**, Vu ~ (O,U) 

then the solution u = 0 of Eq. (4.1) is eventually uniformly stable. 
We will assume that [8] 

(4.4) 

where to : R ---> R + is a continuous function. 
The following result is a consequence of Theorem 4.1. 

Corollary 4.1. If Eq. (4.4) holds and the following integral is diverging 

~ = Vr > oo 
_® 1 +to(s) "0' 

then the solution u = 0 is uniformly stable. 
But if this integral is converging, the solution u = 0 is eventually uniformly stable. 

5. S C L E R O N O M O U S  M E C H A N I C A L  S Y S T E M S  

We will consider a holonomic mechanical system S with bilateral constraints explicitly independent of 
time. Let qr  = (ql . . . . .  qs)  (N  >I 1) be the column vector of the independent Lagrange coordinates. 

We will denote the kinetic energy of the system S by T = T(q, il). We will assume that it is the bilinear 
form of the combined velocities q, positive definite for any q, belonging to the open connected subset 
£2 C R a, containing the origin of coordinates and also T e a _ C .  In addition, it is well known [7, 9] that 
a continuous and non-decreasing scalar function ct : R ÷ --> (0, oo) exists such that 

T(q, il) >1 a(I q I) I 12, V(q, il) e ~ x R Iv 

where 1"] is the Euclidian norm in the space/k ¢¢. 
Suppose certain potential forces act on the system with potential energy 

l- l=H(t ,q)  l ' l eC l (R+x i ) ) ,  H( t , 0 )=0  

and non-potential forces 

Q=Q(t ,q ,  il), QeC(R+ x f 2 x R  N) 

We will assume that each motion of the system is determined for all t/> to; in other words, the global 
continuity of  the solutions of the corresponding Lagrange equations 
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d (V,~r(q, q)) - Vq[T(q,q) - rl(t, q)] = Q(t,q,q) (5.1) 

holds. 
Let V : R ÷ x ~2 x R N ~ R + be a certain Lyapunov function. We will denote by V = l?(t, q, q) its 

derivative, calculated along the motion, i.e. 

¢(t, q, q) = V 4 V(t, q, il)~l + V q V(t, q, ;1)il + Vt (t, q, ~t) 

where/j  is defined by Eq. (5.1) (Vt denotes the partial derivative with respect to t). Note that VeV(t, q, 
q) and VqV(t, q, :t) are column vectors in the notation employed and, consequently, V~V(t, q, q)~ 
and Vql/'(t, q, t ~  are scalar derivatives i n / ~ .  

Suppose Sx = {(q, q) e f~ x R ~v : Ix l < r),  where r > 0 is a sufficiently small real constant and x is 
identical with t~ in Sections 6 and 7 and with (q, t~) in Section 8. 

We will assume that 

V(t,0,0) = 0, Vt~R + (5.2) 

V(t,q, il) >~ Yo(l x l), V(t,q,q) <~ g(t,V(t,q,q)) (5.3) 

V(t,q,(1)eR+xSx; Yo~K 

where g : R ÷ × R ÷ --~ R is a continuous function. We will also assume in some cases that the function 
V(t, q, (t) allows of an infinitesimal upper limit 

V(t,q,q)~ V~(lql+141), V ( t , q , q ) ~  R + x S  x (5.4) 

We will call the corresponding scalar differential equation 

a = g(t, u) (5.5) 

the comparison equation. 
We will give the following well-known properties (see [5, 6, 10, 11]) for the convenience of the reader. 

Property 1. If the zero solution of Eq. (5.5) is stable (asymptotically stable), then the zero equilibrium 
position of system S is stable (asymptotically stable) with respect to x. 

Property 2. If the zero solution of Eq. (5.5) is uniformly stable and V satisfies inequality (5.4), then 
the zero equilibrium position of system S is uniformly stable with respect to x. 

Similar conclusions also hold for the eventual stability. 

Remark 5.1. We will assume the uniqueness of all the solutions of the system of Lagrange equations (5.1) and 
that the following conditions are satisfied 

Vqrl(t,o)=o, Q(t,o,o)mo, Vt~R + 

This means that q(t) - O, il(t ) =-- O, i.e., the zero equilibrium position of system S is the solution of the system of 
Lagrange equations. Consequently, in this case the eventual stability implies the stability [6]. 

These assumptions are omitted for the possible extension of the results obtained and only the conditions of 
eventual stability are given in the corresponding results. 

6. THE BASIC D I F F E R E N T I A L  I N E Q U A L I T Y  

We will assume S 4 --- {i  1 e R s • Iq I < r}. In this section and in Sections 7 and 8 we will assume that 
the following conditions are satisfied 

H(t,q) >~ -p(a(t)x([ q 1)), V(t,q) ~ R + x f~ (6.1) 

T(q, i l )~[x'(Iql) l ,~l]  2, V(q, ,~)ef~xR M (6.2) 
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Qr (t, q, il) ~ + Oil I Ot <~ a(t)f(V) - 20(t)x([ q J)p'(o(t)x(I q I)) (6.3) 

V(t, q, il) e R+ x Il x Sil 

Here 

V(t, q, [7) -'- E(t, q, it) + 2p(O(t)x( I q I)) (6.4) 

is the Lyapunov function, which is the perturbed total energy 

E(t, q, q) = T(q, ~t) + rl(t, q) 

We will also assume that 
(1) the functionp = p(s) belongs to the class C1(R+),p(O) = 0 and its derivativep'(s) is an increasing 

and strictly positive function for s > 0; 
(2) the function cr = o(t) belongs to the class CI(R +) and is strictly positive in R+; 
(3) the function z = "c(s) belongs to the class CI(R+), z(0) = 0 and a constant e > 0 exists such that 

x'(s) >~ e, Vs ~ R* 

(4) the functions a = a(t) a n d f  = f(s) are defined and continuous in R+,f(s) > 0 when s > 0 and 

i = ~ ,  Vu>O 
ds 

o f ( s )  

Remark 6.1. Since T(q, (1) >~ [elq[] 2 in ~ ×R/v, conditions (6.1) and (6.2) can be replaced by the following 

rl(t,q) ~ -p(o(t) l ql), v(t,q) ~ R + ×fl 
T(q, il)~[elit[] 2, V(q,q)efl×R N 

We will obtain the limit for the derivative l?(t, q, (1) in order to apply the comparison method. 
We have 

V(t, q, il) ~ a(t)f(V) + 2a(t)p'(a(t)x( I q I))Vqx([ q I)q 

V(t, q, q) ~ R + x f l  x R ~v 

On the other hand, [ VqZ( I q I ) [ = "c'( I q I ) on ¢~, and thus it can be seen that 

Vox(Iql)q ~< x'(lql)l ' tl ,  V(q, ii) e f I × R N  

Consequently, taking into account condition (6.2) we will have 

V q X ( l q J ) 4 ~ < ~ ,  

From condition (6.1) we find 

a(t)x(I q I) ~ p-t (V(t, q, q)), 

V(t,q,q)~R+ x ~ x R  ~ 

V(t,q,q)~R+ ×f l×R N 

(6.5) 

(6.6) 

and hence, taking into account that the functionp'(s) is an increasing function, we obtain 

p,(o(t)~(i q ]))<~(p, o p-t XV(t,q,q)), V(t,q, il)¢ R + x f l x  R N (6.7) 

From inequality (6.5), taking into account inequalities (6.3), (6.6) and (6.7), we finally obtain the 
following differential inequality 

(:<~a(t)f(V)+ 2a( t )~ (p 'op- l ) (V) ,  V(t,q,q)~R+ xflxSin (6.8) 
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Consequently, taking into account that 

v(t,q,4)>--e 21412, V(t,q,q)~R+ x f l x S #  

we conclude that both conditions (5.3) are satisfied forx = q and the corresponding comparison equation 
has the form it = g(t, u), where g : R ÷ x R ÷ --> R is any continuous function satisfying the condition 

a(t)f(s) + 2 a ( t ) ~ ' ( p '  o p-I)(s) ~< g(t, s), V(t, s) ~ R + x R + (6.9) 

7. S T A B I L I T Y  W I T H  R E S P E C T  TO A PART OF T H E  V A R I A B L E S  
W I T H  R E S P E C T  TO 

We will define the function c : R ÷ ~ R + by the equality 

c(t)=max{a(t),2cl(t)}, Vt~R + 

Theorem 7.1. Ifc( t )  e La(R +) and 

" ds 
J(u)=I 0 'f(s)+47(t:"op-')(s) =**' vu>0 

(7.1) 

then the equilibrium position t~ = q = 0 of system S is stable with respect to q. If also V(t, q, q) satisfies 
condition (5.4), then the stability with respect to q is uniform. 

Proof. The continuous function g(t, s), defined by the relation 

g(t, s) = c(t)[f(s) + 4 (p'o (7.2) 

satisfies inequality (6.9). 
Applying Corollary 2.1 from [1], it is also possible to show that the zero solution of the comparison 

method it = g(t, u) is uniformly stable. Properties I and 2 complete the proof. 

Theorem 7.2. If c(t) ~ LI(R +) and the integral J(u) (7.1) converges, the equilibrium position 
t~ = q = 0 is eventually stable with respect to q. If inequality (6.4) holds, this stability is uniform. 

The proof, as in the previous case, is derived from the fact that the solution u = 0 of the equation 
it = g(t, u), whereg(t, s) is defined by relation (7.2), is uniformly stable [1, Corollary 3.1]. We will assume 

r(u)__, i ds 
f (s )  

and suppose that a continuous function h : R ---> R ÷ exists such that 

. fu(p '  o p-I)(U)~ f(u)h(r(u)), Vu ~ R + (7.3) 

where ~ > 0 is an appropriately chosen real constant. Consequently 

a(t)f(u) + 2t~(t)~'(p '  o p-l)(u) ~ c(t)f(u)[1 + h(r(u))], Vu ~ R ÷ (7.4) 

Since 

" d s  rCu) ds 
Jr (r) = [ f(s)[l  + (h o r)(s)] 1 + h(s)' Vu ~ R + 

0 

then the following results can be easily obtained. 

Corollary 7.1. Suppose c(t) ~ LI(R+). If condition (7.3) holds and Jl(r) = 0% Vr > --co, then all the 
conditions of  Theorem 7.1 are satisfied. 
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Corollary 7.2. We will assume that c(t) ~ LI(R +) and Jl(r) < oo for r > --oo. Then all the conditions 
of Theorem 7.2 are satisfied. 

Remark 7.1. We will assume that h(s) <~ H, Vs E R, where H < oo is a real constant. Then the right-hand side 
of condition (7.4) can be replaced by ~(t)f(u), where ~(t) = a(t) + 2Ht~(t). 

It follows that the zero solution of the comparison equation tJ = g(t, u) is stable when (and only when) the function 
if(t) belongs to the class LI(R+). This means, in particular, that the equilibrium position q = q = 0 of system S 
will be stable (or uniformly stable) with respect to q also when c(t) ~ L (R) .  

Moreover, if 
I 

fi(s)ds-~-oo as t~ ,*  
0 

then the zero solution of Eq. (5.5) is equi-asymptotically stable. [1]. 
Thus, it can be proved that the zero equilibrium position of system S is equi-asymptotically stable with respect 

t o  ~). 

Remark 7.2. We will assume thatp(s) = s" (n t> 1) andf(s) = s. Then inequality (7.3) holds when 

h(s) = nexp( ~n2 S ) 

Consequently, when 1 ~< n < 2 we can apply Corollary 7.1, and when n t> 2 we can apply Corollary 7.2. The 
case n = 2 can also be included in the previous Remark 7.1. 

We will consider the case when a(t) <<- 0, Vt 6 R ÷. 

Theorem 7.3. We will assume that a(t) <~ O, Vt ~ R ÷, the function o(t) belongs to the class Ll(R ÷) 
and 

J2( r ) = i  ds = o ~]p(s) "0' Vr>O 

Then the zero equilibrium position of system S is stable with respect to q. The stability will be uniform, 
if Eq. (5.4) is satisfied. 

Proof. Assuming r(s) = p-l(s), it is obvious that 

i ds r¢u) ds 

Consequently, since r(s) ~ 0 for s ~ 0, the conditions of the theorem will ensure uniform stability 
of the zero solution of the comparison equation. 

tJ = 2t~(t}x/-u(p' o p-I )(u) 

Properties 1 and 2 complete the proof. 
The following theorem can be proved similarly. 

Theorem 7.4. We will assume that a(t) -< 0, Vt ~ R ÷ and c~(t) ~ LI(R+),J2(r) < o% Vr > 0. Then the 
equilibrium position c) = q = 0 is eventually stable with respect to q. If Eq. (5.4) is satisfied, this stability 
will be uniform. 

We will consider a special case, for which h(s) = s k (k is a real constant) in Eq. (7.3). Consequently, 
inequality (6.9) holds, where 

g(t, u) = a(t)f(u) + 2a(t)f(u) exp(r(u)) 

We will also assume that the function a(t) satisfies Eq. (1.2), but the function c(t) does not necessarily 
belong to the class LI(R÷). 

Theorem 7.5. We will assume that k > 0. Then, if a(t)A-k(t) ~ LI(R+), the zero equilibrium position 
of system S is uniform with respect to 0. 
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Proof. According to Corollary 3.1, the conditions of the theorem ensure that the zero solution of 
the comparison equation 

[~ = g(t,u) 

is stable. Property 1 completes the proof. 

The following theorems are proved similarly, on the basis of Theorem 3.1. 

Theorem 7.6. We will assume that Eq. (5.4) is satisfied, k > 0 and also 
(1) a constant B < ~ exists such that 

Ak(t)7 ~(s)A-k(s)ds<~B, Vt~R + 
t 

(2) a constant H />  1 exists such that 

A(tl)<~HA(t2), Vtt~O, Vt2>~t l 

Then the zero equilibrium position of system S is uniformly stable with respect to q. 

Theorem 7.7. We will assume that k < 0 and 

t 

Ak(t)S a(s)A-k(s)ds"->O, t-->~* 
0 

Then the zero equilibrium position is eventually stable with respect to q. 
If additionally Eq. (5.4) holds and condition 2 of Theorem 7.6 is satisfied, then the zero equilibrium 

position is eventually uniformly stable with respect to q. 

8. STABILITY W I T H  R E S P E C T  TO (q, q) 

Assuming Sq = {q e f2 : I q I < r}, we will suppose that 

rl(t,q)~>- p(~(t)x(I q I))+~p(} q I), V(t,q) eR+ XSq (8.1) 

and also that conditions (6.2) and (6.3) are satisfied for all (t, q, q) ~ R+ x Sq X S 0 with the change and 
addition that x = x(s) is a non-negative and non-decreasing function belonging to the class CI(R :~) and 
q~ = q0(s) belongs to the class K. 

Remark 8.1. Inequality (5.1) and condition (8.1) ensure that the inequality 

V(t,q, il)~a(r)[2112 +~P(lq[), V(t,q,q)ER+ ×SqXSil 

holds and, consequently, Eq (5.3) holds forx = (q, c)). Moreover, as in Section 6, it is possible to obtain a differential 
inequality, which differs from inequality (6.8) only in the fact that it holds for all (t, q, q) ~ R+ x Sq X Sil. Hence, 
denoting the function satisfying condition (6.9) by g(t, s), it is clear that Eq. (5.4) also holds. 

The following stability criteria are essentially similar to the stability criteria with respect to a part of 
the variables in Section 7. We will therefore confine ourselves to formulating two theorems, which, in 
turn, are obtained from Theorems 3.1 and 3.2. In these theorems 

ds J(u)  = I 
o f(s)+~rs(p'°P-I)(s) 

Theorem 8.1. If the function c(t) belongs to the class LI(R +) and J(u) = ~ ,  Vu > 0, the zero 
equilibrium position of system S is stable. Moreover, the stability will be uniform if Eq. (5.4) is satisfied. 

Theorem 8.2. If the function c(t) ~ LI(R ÷) and J(u) < ~,, Vu > 0, the zero equilibrium position of 
system S is eventually stable and consequently, for the condition (5.4) it is eventually uniformly stable. 
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9. E X A M P L E S  

Example 1. Consider a heavy particle P of mass m, moving along the parabola 

y=x212p, z = 0 ( p = c o n s t > 0 )  

in the system of coordinates Oxyz. The system of coordinates Oxyz rotates with an angular velocity to(t) = c0(t)j 
(the unit vectors of the x, y, z axes are denoted by i, j, k respectively) around the vertical y axis, relative to the 
coordinate system connected to the Earth, which we assume to be inertial. Then 

o2(t)=co2(t)-glp>O, Vt~R + (9.1) 

Taking the abscissa x as a Lagrange coordinate, we will have 

T ( x , j , = l m ( l + ~  2, l'l(t,x)=-lma2(t,x 2 (9.2) 

and Q(t, x, k) =- O. 
Note that the potential energy is negative near x = 0 for fixed t ~ R +. Nevertheless, applying Theorem 7.1, we 

obtain that if the function or(t) (9.1) is bounded in R + and 

O( t )dt < ** 
0 

then the equilibrium position.~ = x = 0 is uniformly stable with respect to k. 

Example 2. We will consider Example 1, assuming in addition that an elastic force f --- --kOP is acting on the 
particle P, where the time-dependent stiffness k = k(t) satisfies the inequality 

k. ~k(t)<ma2(t), VteR +. k.=cons t>0  

Applying Theorem 8.1, it can be shown that if the function 

c(t)= max{2~2(t)-k(t)lm, 2w(t)ff(t)-k(t)lra it(t) 1 
~[o2(k)-k(t)/m 'k(t) I 

belongs to the class LI(R+), the equilibrium position k = x = 0 is stable. 

Example 3. We will assume w(~) - 0 in Example I. Additionally we will assume that a time-dependent force 
f = ¢~(t)i, where ~(t) > 0, Vt ~ R , acts on the (heavy) particle P. The kinetic energy is defined by Eq. (9.1) and 
the generalized potential energy will have the form 

Fl(t,x) = -~t)x +I rag x 2 
2p 

and Q(t, x, k) - O. Applying Theorem 8.2, it can be shown that if the function ~(t) is bounded in R + and 

~ ll~(t)dt < ** 
0 

then the equilibrium position k = x = 0 is eventually uniformly stable. Note that in this case k = x = 0 is not a 
solution of the Lagrange equation. Hence, in the given example eventual stability does not ensure stability. 

Example 4. Consider a heavy particle P of mass m, moving along the curve 

y = 4 l x l N ,  z = 0  

in the system of coordinates Oxyz, connected to the Earth; they axis is vertical. We will assume that a time-dependent 
force f = rn~(t)j is acting on the particle, where 

~t)>g, ~(t)~O, VteR + 
We have 

r=½m(l+lxl~)::, rl(t,x)=-4m(~t)-g)lxl N, fl(t,x,k)=O 
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Applying Theorem 7.4 it can be shown that  if 

(d?(t) - g ) ~  dt <** 
o 

then the equilibrium position.~ = x = 0 is eventually uniformly stable with respect  to k. In this case ~ = x = 0 is 
the solution of  the Lagrange equation 

(1+ I x 1~)~+31~1y2  x2 + ( g - ~ ( t ) ) l x T 4  = 0 

but  the sufficient condit ions for the uniqueness of the zero solution are not satisfied. 
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